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Lecture Notes: Analytic Tableaux

Peter Selinger

These notes are based on RaymondM. Smullyan, “First-order logic”. Dover Pub-

lications, New York 1968.

1 Analytic Tableaux

Definition. A signed formula is an expression TX or FX , where X is an (un-

signed) formula. Under a given valuation, a signed formula TX is called true if

X is true, and false ifX is false. Also, a signed formula FX is called true ifX is

false, and false ifX is true.

We begin with the following observations about signed formulas:

Observation 1.1. For all propositionsX, Y :

1a. T (¬X) ⇒ FX .

1b. F (¬X) ⇒ TX .

2a. T (X ∧ Y ) ⇒ TX and TY .

2b. F (X ∧ Y ) ⇒ FX or FY .

3a. T (X ∨ Y ) ⇒ TX or TY .

3b. F (X ∨ Y ) ⇒ FX and FY .

4a. T (X → Y ) ⇒ FX or TY .

4b. F (X → Y ) ⇒ TX and FY .

The method of analytic tableaux can be summarized as follows: To prove the

validity of a propositionX , we assume FX and derive a contradiction, using the

rules from Observation 1.1. In doing so, we follow a specific format which is

illustrated in the following example.

Example 1.2. An analytic tableau proving the validity of X = (p ∨ (q ∧ r)) →
((p ∨ q) ∧ (p ∨ r)) is shown in Table 1. Note: the line numbers, such as (1), (2)
etc, are not part of the formalism; they are only used for our discussion.

The initial premise on line (1) is of the form F (Y → Z), where Y = (p∨(q∧r))
and Z = ((p ∨ q) ∧ (p ∨ r)). By rule 4b, we can conclude both TY and FZ .
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(1) F (p ∨ (q ∧ r)) → ((p ∨ q) ∧ (p ∨ r))
(2) T (p ∨ (q ∧ r))
(3) F ((p ∨ q) ∧ (p ∨ r))

!!!!!!!!!!!!!!!! """"""""""""""""

(4) Tp
######## $$$$$$$$

(5) F (p ∨ q)
(6) Fp

(7) Fq

×

(8) F (p ∨ r)
(9) Fp

(10) Fr

×

(11) T (q ∧ r)
(12) Tq

(13) Tr
######## $$$$$$$$

(14) F (p ∨ q)
(15) Fp

(16) Fq

×

(17) F (p ∨ r)
(18) Fp

(19) Fr

×

Table 1: An analytic tableau forX = (p ∨ (q ∧ r)) → ((p ∨ q) ∧ (p ∨ r)).

These are called the direct consequences of line (1), and we write them in lines (2)

and (3), respectively. After we have done so, we say that line (1) has been used.

Now consider the formula in line (2), which is of the form T (X ∨Y ), whereX =
p and Y = q ∧ r. From rule 3a, we may conclude that either TX or TY holds.

Since the conclusion in this cases involves a choice between two possibilities, we

say that the formula on line (2) branches. When using such a formula, the tableaux

splits into two branches, one for each possibility. This has been done in lines (4)

and (11).

Continuing in a similar fashion, we use up all the lines containing composite for-

mulas. We say that a branch is closed if it contains both TX and FX , for some

signed formulaX . We mark closed branches with the symbol×. A closed branch
represents a contradiction. Since in this example, all branches are closed, we con-

clude that the original formula (p ∨ (q ∧ r)) → ((p ∨ q) ∧ (p ∨ r)) is valid.

As the example shows, note that there are essentially two types of signed formulas:

(A) signed formulas with direct consequences, which are T (¬X), F (¬ X),
T (X ∧ Y ), F (X ∨ Y ), and F (X → Y ), and

(B) signed formulas which branch, which are F (X ∧ Y ), T (X ∨ Y ), and
T (X → Y ).
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When using a formula of type (A), we simply add all of its direct consequences

to each branch underneath the formula being used. When using a formula of type

(B), we split each branch underneath the formula into two new branches. The

rules for tableaux can be summarized schematically as follows:

T (¬X)
FX

F (¬X)
TX

T (X ∧ Y )
TX

TY

F (X ∧ Y )
FX | FY

T (X ∨ Y )
TX | TY

F (X ∨ Y )
FX

FY

T (X → Y )
FX | TY

F (X → Y )
TX

FY

Definition. A branch is said to be complete if every formula on it has been used.

A tableau is said to be completed if every one of its branches is complete or closed.

A tableau is said to be closed if all of its branches are closed. A tableau is said to

be open if it is not closed, i.e., if it has at least one open branch.

We say that a formulaX has been proved by the tableaux method if there exists a

closed analytic tableau with origin FX .

Strategies. Our goal is to find a completed analytic tableau for a given formula.

There are different strategies for deriving such a tableau.

Strategy 1 is to work systematically downwards: in this strategy, we never use a

line until all lines above it have been used. When using this strategy, we are guar-

anteed to arrive at a completed tableau after a finite number of steps. However,

strategy 1 is often more inefficient than the following strategy 2:

Strategy 2: give priority to lines of type (A). This means that we use up all lines of

type (A) before using those of type (B). When following this strategy, we postpone

the creation of new branches until absolutely necessary, thus keeping the size of

the tableau smaller when compared to strategy 1.
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Abbreviations. We often use the following shortcut notation when discussion

signed formulas: We use the letter α to stand for any signed formula of type (A).

In this case, we use α1 and α2 to denote the direct consequences (in the special

case where there is only one direct consequence, we will set α1 = α2). All

possibilities for α, α1, and α2 are summarized in the following table:

α α1 α2

T (X ∧ Y ) TX TY

F (X ∨ Y ) FX FY

F (X → Y ) TX FY

T (¬X) FX FX

F (¬ X) TX TX

We also use the letter β to stand for any signed formula of type (B). In this case,

we use β1 and β2 to denote the two alternative consequences. For reasons of

symmetry, we further also allow β to also stand for a signed formula which is a

negation, in which case we set β1 = β2. Thus, all possibilities for β, β1, β2 are

summarized as follows:

β β1 β2

F (X ∧ Y ) FX FY

T (X ∨ Y ) TX TY

T (X → Y ) FX TY

T (¬X) FX FX

F (¬ X) TX TX

With these conventions, the rules for tableaux can be written succinctly as follows:

α

α1

α2

β

β1 | β2

Definition. The conjugate of a signed formula FX is TX , and the conjugate of

a signed formula TX is FX . We write ϕ̄ for the conjugate of a signed formula ϕ.

We also observe the following: the conjugate of any α is some β, and in this case,

(α1) = β1 and (α2) = β2. The conjugate of any β is some α, and in this case,

(β1) = α1 and (β2) = α2. Moreover, for any signed formula ϕ, we have ¯̄ϕ = ϕ.
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2 Soundness and Completeness for Analytic Tableaux

Recall that we have called a branch of a tableau “complete” if every formula on

it “has been used”. With our convention on using the letters α and β for signed

formulas, we may express this more precisely:

A branch θ of a tableau T is complete if for every α ∈ θ, both α1, α2 ∈ θ, and for

every β ∈ θ, either β1 ∈ θ or β2 ∈ θ.

As before, we say that a tableau T is completed if every branch θ of T is either

closed or complete.

2.1 Tableaux and valuations

Let [[−]] be a valuation. We extend [[−]] to signed formulas in the obvious way
by letting [[TX ]] = [[X ]] and [[FX ]] = 1 − [[X ]]. Thus, FX is true under a given

valuation iffX is false under that valuation.

Definition. Let [[−]] be a valuation. We say that a branch θ of a tableau T is true

under [[−]] if for all ϕ ∈ θ, [[ϕ]] = 1. We say that T is true under [[−]] if there is at
least one branch θ of T such that θ is true under [[−]].

2.2 Soundness

Soundness states that if a formula X is provable by the tableaux method, then X

is a tautology.

Theorem 2.1 (Soundness). SupposeX is a proposition, and T is a closed tableau

with origin FX . Then X is a tautology.

The proof depends on the following lemma:

Lemma 2.2. Suppose T1 and T2 are tableaux such that T2 is an immediate exten-

sion of T1. Then T2 is true under every interpretation under which T1 is true.

Proof. Suppose T1 is true under the given valuation [[−]]. Then T1 has at least

one true branch θ. Now T2 was obtained by adding one or two successors to the

endpoint of some branch θ1 of T1. If θ1 #= θ, then θ is still a branch of T2, hence

T2 is true and we are done. Assume therefore that θ1 = θ. Then θ was extended

by one of the following operations:
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(A) For some α ∈ θ, we have added α1 or α2, so θ ∪ {α1} or θ ∪ {α2} is a
branch of T2. But [[α]] = 1, therefore [[α1]] = 1 and [[α2]] = 1, therefore T2

contains a true branch.

(B) For some β ∈ θ, we have added both β1 and β2, so both θ ∪ {β1} and
θ ∪ {β2} are branches of T2. But [[β]] = 1, therefore [[β1]] = 1 or [[β2]] = 1,
therefore T2 contains at least one true branch. !

Lemma 2.3. Let [[−]] be a fixed valuation. For any tableau T , if the origin of T
is true under [[−]], then T is true under [[−]].

Proof. This is an immediate consequence of the previous lemma, by induction:

T is obtained from the origin by repeatedly extending the tableau in the sense of

Lemma 2.2, at each step preserving truth. !

Proof of the Soundness Theorem: Let T be a closed tableau with origin FX , and

let [[−]] be any valuation. Since T is closed, each branch contains some formula

and its negation, and therefore T cannot be true under [[−]]. From Lemma 2.3, it
follows that the origin of T is false under [[−]], thus [[FX ]] = 0, thus [[X ]] = 1.
Since [[−]] was arbitrary, it follows thatX is a tautology. !

2.3 Completeness

Completeness is the converse of soundness: it states that if X is a tautology, then

X is provable by the tableaux method. In fact we will prove something slightly

stronger, namely, ifX is a tautology, then every strategy for completing a tableaux

forX will lead to a closed tableaux.

Theorem 2.4 (Completeness). (a) SupposeX is a tautology. Then every com-

pleted tableau with origin FX must be closed.

(b) Suppose X is a tautology. Then X is provable by the tableaux method.

The main ingredient in the proof is the notion of a Hintikka set.

Definition. Let S be a (finite or infinite) set of signed formulas. Then S is called a

Hintikka set (or downward saturated) if it satisfies the following three conditions:

(H0) There is no propositional variable p such that both Tp ∈ S and Fp ∈ S.

(H1) If α ∈ S, then α1 ∈ S and α2 ∈ S.
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(H2) If β ∈ S, then β1 ∈ S or β2 ∈ S.

Note that, by definition, a complete non-closed branch θ is a Hintikka set.

If S is a set of signed formulas, we say that S is satisfiable if there exists a valua-

tion [[−]] such that for all ϕ ∈ S, [[ϕ]] = 1.

Lemma 2.5 (Hintikka Lemma). Every Hintikka set is satisfiable.

Proof. Let S be a Hintikka set, and define a valuation as follows: for any propo-

sitional variable p, let

[[p]] = 1 if Tp ∈ S,

[[p]] = 0 if Fp ∈ S,

[[p]] = 1 if Tp #∈ S and Fp #∈ S.

Note that, since S is a Hintikka set, we cannot have Tp ∈ S and Fp ∈ S at the

same time. Thus, this is well-defined. We recursively extend [[−]] to composite
formulas in the unique way.

We now claim that for all ϕ ∈ S, [[ϕ]] = 1. This is proved by induction on ϕ. For

atomic ϕ, this is true by definition. If ϕ is composite, then there are two cases:

(A) ϕ is some α. Then by (H1), α1 ∈ S and α2 ∈ S. By induction hypothesis,

[[α1]] = 1 and [[α2]] = 1, therefore [[α]] = 1.

(B) ϕ is some β. Then by (H2), β1 ∈ S or β2 ∈ S. By induction hypothesis,

[[β1]] = 1 or [[β2]] = 1, therefore [[β]] = 1.

Thus, [[ϕ]] = 1 for all ϕ ∈ S, and hence S is satisfiable as desired. !

Proof of the Completeness Theorem:

(a) Suppose X is a tautology, and T is some completed tableau with origin

FX . Suppose θ is some branch of T which is not closed. Then θ is a

Hintikka set by definition, hence satisfiable by the Hintikka Lemma. Thus,

there exists some valuation [[−]] which makes θ true. Since FX ∈ θ, we

have [[FX ]] = 1, hence [[X ]] = 0, hence X is not a tautology, a contradic-

tion. It follows that every branch of T is closed.

(b) It is easy to see that for any signed formula ϕ, there exists a completed

tableau with origin ϕ. For example, such a tableau is obtained by following
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Strategy 1 or Strategy 2 from Section 1. In particular, if X is a tautology,

then there exists a completed tableau with origin FX , which is closed by

(a), and henceX is provable by the tableaux method. !

2.4 Discussion of the proofs

We note the following features of the soundness and completeness proofs:

Soundness proof. The proof of soundness essentially proceeds by induction on

tableaux, as is evident in the proof of Lemma 2.3. One fixes a valuation, then

proves by induction that all derivations respect the given valuation.

This proof method is typical of soundness proofs in general. Compare this proof

e.g. to the soundness proof for natural deduction in Lemma 1.5.1 of van Dalen’s

book. Most of the time, soundness proofs are relatively easy.

Completeness proof. The central part of any completeness proof is a satisfiabil-

ity result: for a certain set of formulas, one must show that there exists a valuation

making all the formulas true. To see why this is central, notice that the complete-

ness property can be equivalently expressed as follows:

IfX is not provable, thenX is not a tautology.

Thus, it is natural to start by assuming that X is not provable (e.g., its analytic

tableau does not close). Now one must prove that X is not a tautology, which

amounts to finding a specific valuation which makes X false. In the case of ana-

lytic tableaux, this valuation is obtained using Hintikka’s lemma.

Compare this to the completeness proof for natural deduction in Section 1.5 of

van Dalen’s book. It uses a completely different method, yet the central lemma is

the one which allows one to construct a valuation, namely Lemma 1.5.11 (every

consistent set is satisfiable). The method used for constructing a suitable valua-

tion varies from proof system to proof system, and usually gets more difficult as

features are added to the logic.
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